Patrick E. Fleming Faculty Profile
Patrick E. Fleming
Professor and Chair
Department of Chemistry & Biochemistry
- E-mail: patrick.fleming@csueastbay.edu
- Phone: (510) 885-3492
- Office: Science N431
- Office Hours: MT 1:00-2:00
My research primarily focuses on the areas of Molecular Modeling, and Curriculum Development. In the area of Molecular Modeling, I focus on determining thermodynamic values for systems in which it may be difficult to isolate a specific species, such as chemical intermediates. In the area of Curriculum Development, I am interested in developing computer-aided resources in support of chemistry curricula. I am particularly interested in of such resources.
I am also continually working on my OER textbooks for physical chemistry, which I make available free of charge through the .
- PhD, the Ohio State University, 1994
- MS, the Ohio State University, 1988
- BS, University of Notre Dame, 1985
Not teaching this semester.
On Simplifying the AIIR Method for Determining the H-R Bond Enthalpy Based on Computational Results. A. Awad and P. E. Fleming, Journal of Undergraduate Chemistry Research, 18(1), 1-4 (2019)
On Calculating H-R Bond Enthalpies Using Computational Data. R. Khorasani and P. E. Fleming, Computational and Theoretical Chemistry, Computational and Theoretical Chemistry, 1096, 89-93 (2016), DOI: 10.1016/j.comptc.2016.09.033
The Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry. N. Nassabeh, M. Tran, and P. E. Fleming, J. Chem Ed., 91(8), 1248-1253 (2014), DOI: 10.1021/ed4007748
The Ionization Energies and Simulated Photoelectron Spectra of HPCN and HNCP. S. A. Betterton, A. S. Berka, and P. E. Fleming, Journal of Theoretical and Computational Chemistry, 9(1), 189-200 (2010)
Â鶹ÃÛÌÒAVing Electron Exchange Symmetry Properties to Better Understand Hund’s Rule. P. E. Fleming, Chem. Educator 13(3), 141-147 (2008)
Transition Metal Catalyzed H2/D2O Exchange: Distinguishing Between the Single and Double Exchange Pathways. J. L. Carriker, P. S. Wagenknecht, M. A. Hosseini and P. E. Fleming, Journal of Molecular Catalysis A: Chemical 267, 218–223 (2007)
A Quantum Mechanical Game of Craps: Teaching the Superposition Principle Using a Familiar Classical Analog to a Quantum Mechanical System. P. E. Fleming, J. Chem. Ed., 78, 57-60 (2001)
The Ionization Energies of the Isomers of CN2. J. Armstrong, L. Degoricija, A. Hilderand, J. Koehne and P. E. Fleming, Chem. Phys. Lett., 332(5-6), 591-596 (2000)
The Ionization Energy and DHf (O K) of CP, PCP and PCCP. P. E. Fleming, E. P. F. Lee and T. G. Wright, Chem. Phys. Lett., 332(1-2), 199-207 (2000)
The Ionization Energy of the Diazomethyl Radical (HCNN). P. E. Fleming, Chem. Phys. Lett., 321(1-2), 129-134 (2000)
Toward Understanding the Role of Stark Effects When Probing the Nuclear Hyperfine States of Atomic Hydrogen, K. T. Lorenz, K. A. Cowen, P. E. Fleming, M. G. Matthews, M. F. Herman and B. Koplitz. Chem. Phys. Lett. 261, 145-154 (1996)
A Reanalysis of the A 1 P - X 1S+ Transition of AlBr, P. E. Fleming and C. W. Mathews, J. Molec. Spectrosc. 175, 31-36 (1996).
The n11 Band of Cyanuric Fluoride, P. E. Fleming and C. W. Mathews, J. Molec. Spectrosc., 152, 317-327 (1992).
Experimental Evidence for the Role of H5+ in the Formation of Rydberg Levels of H3 in a Hollow Cathode Discharge, G. I. Gellene, C. E. Krill, P. E. Fleming, and J. L. Hardwick, in Proceedings of the Seventeenth International Symposium on Free Radicals, edited by K. M. Evenson (NBS/SP-716).