1. Properties of Probability

(1) Terminology

- denotes the null or empty set;
- A B means A is a subset of B;
- A B is the union of A and B;
- A B is the intersection of A and B;
- A' is the complement of A (i.e., all elements in S that are not in A).
- Mutually exclusive and Exhaustive events:

A₁, A₂, . . . , A_k are mutually exclusive events means that A_i B A_j = \hat{i} , i j; that is, A₁, A₂, . . . , A_k are disjoint sets;

 $A_1,\,A_2,\,\ldots,\,A_k$ are exhaustive events means that A_1

Х

(3) Venn diagrams

(4) Definition

Probability is a real-valued set function P that assigns, to each event A in the sample space S, a number P(A), called the probability of the event A, such that the following properties are satisfied:

- a) P(A) O;
- b) P(S) = 1;
- c) if A_1 , A_2 , A_3 ... are events and A_i A_j = , i j, then

 $P(A_1 \quad A_2 \quad \cdots \quad A_k) = P(A_1) + P(A_2) + P(A_1) + P(A_1) + P(A_1) + P(A_2) + P(A_2) + P(A_1) + P(A_2) + P(A_2) + P(A_2) + P(A_1) + P(A_2) + P(A$

1

- d) For each event A, P(A) 1.
- e) If A and B are any two events, then P(A = B) = P(A) + P(B) P(A = B).
- f) If A, B, and C are any three events, then $P(A \ B \ C) = P(A) + P(B) + P(C) P(A \ B) P(A \ C) P(B \ C) + P(A \ B \ C).$

(1) Definition

The conditional probability of an event A, given that event B has occurred, is

defined by _____, p0 0 1 32 90 73001203 Fref * 14(y:)]63.0 f7.8

CALIFORNIA STATE

If A is an event, then A is the union of m mutually exclusive events, namely, $A = (B_1 \quad A) \quad (B_2 \quad A)$

(510) 885-3674 www.csueastbay.edu/scaa scaa@csueastbay.edu

CALIFORNIA STATE