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Algebra

1. Prove: Each subgroup of a cyclic group is cyclic.

2. Suppose that φ : R → S is a ring homomorphism from a commutative ring R with unity 1 onto a ring
S. Prove:

(a) ker φ is an ideal of R.

(b) S is a commutative ring with unity.

3. Let Q[x] be the ring of polynomials with coefficients in Q, the field of all rational numbers. Prove or
disprove:

(a) (x3 + 4x2 + 3x + 2) is a maximal ideal of Q[x].

(b) Q[x]/(x3 + 4x2 + 3x + 2) is a field.

4. Let A be a real n × n matrix and let AT be its transpose matrix. Prove that ATA is invertible if and
only if the column vectors of A are linearly independent
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Complex Analysis
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Real Analysis

1. Let A = {√
q | q ∈ Q and 0 ≤ q}. Prove that A has zero measure (with the standard measure of

Euclidean space).

Hint: Use the fact that the measure of a countable disjoint un
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Topology

1. Prove: Each metric space is Hausdorff.

2. Suppose X and Y are topological spaces, f : X → Y is continuous, and A
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Numerical Analysis

1. (a) Prove that there exists exactly one solution of the equation arctan x = e−x.

(b) Use Newton’s method to find an approximation β of the solution α such that |α − β| < 10−6.

(c) Prove that your approximation is in fact within 10−6 of (the exact) α.

Note: For this problem you may not use any graphing or root finding capabilities of your calculator.

2. Consider the following difference formula.

f ′(x0) =
f(x0 + 4h) − 12f(x0 + 2h) + 32f(x0 + h) − 21f(x0)

12h
− f(4)(x0)h3 + O(h4)

Note that
f(x0 + 4h) − 12f(x0 + 2h) + 32f(x0 + h) − 21f(x0)

12h
is a O(h3) approximation of f ′(x0).

Use the formula to construct a O(h4) approximation of f ′(x0) that involves

f(x0), f(x0 + h), f(x0 + 2h), f(x0 + 4h), and f(x0 + 8h).

3. Let A be a symmetric pentadiagonal positive definite matrix of the following form.
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Linear Programming

1. Solve the following linear programming problem using the Primal Simplex Method (NOT the Dual
Method).

minimize 6x1 + 3x2 + 4x3

subject to 3x1 + x2 + 3x3 ≥ 9

2x1 − x2 + 4x3 ≤ 8

2x1 + 2x2 + x3 ≥ 9

xj ≥ 0

2. Consider the following maximization problem.

maximize 40x1 + 20x2 + 10x3

subject to 3x1 + x2 + 4x3 ≤ 18

2x1 + 2x2 + x3 ≤ 16

x1 + x2 + 3x3 = 14

x1, x2, x3 ≥ 0

The beginning and final tableaux in the Simplex method are given in the following table.

x1 x2 x3 x4 x5 a1

x4 3 1 4 1 0 0 18

x5 2 2 1 0 1 0 16

a1 1 1 3 0 0 1 14

−40 −20 −10 0 0 0 0

� 4 4 �
4 4
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Linear Programming — continued

3. Using the Complementary Slackness Theorem prove or disprove the following statement: (4, 2, 0) is the
optimal solution of the maximization problem below.

maximize 5x1 + 2x2 + x3

subject to x1 + 2x2 + 2x3 ≤ 14

2x1 + 3x2 + 4x3 ≤ 14

x1 + 2x2 + x3 = 8

xj ≥ 0

4. Solve the following transportation problem, with transportation costs given inside the table. The sup-
plies are listed along the left, and the demands are listed along the top.
Make sure to give the final minimum cost.

30 20 25 30 25

20 7 11 10 9 8

30 7 3 2 4 5

30 6 6 9 4 5

50 8 10 12 11 9
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