Algebra

- . Let $\phi: G \to G'$ be a group homomorphism with kernel K. Prove the following.
 - (a) $\phi(G)$, the image of G, is abelian if and only if $xyx^{-1}y^{-1} \in K$ for all $x, y \in G$.
 - (b) $\{x \in G : \phi(x) = \phi(a)\} = Ka$ for each $a \in G$.
- 2. Prove that each finite integral domain is a field.
- 3. Let R be a ring with multiplicative identity \neq , and let F be a field. Prove that if $\phi: R \to F$ is a surjective ring homomorphism, then the kernel of ϕ is a maximal ideal in R.
- 4. Let V be a vector space over the field F, and let $T: V \to V$ be a linear operator on V. Prove that

 $V_0 = \{ \mathbf{v} \in V \mid T^k \mathbf{v} = \mathbf{0} \text{ for some integer } k \geq \}$

is a subspace of V, and if $T^m \mathbf{v} \in V_0$ for some $m \geq \cdot$, then $\mathbf{v} \in V_0$.

Complex Analysis

. Find the image under the transformation

$$w = \frac{z - z}{z + z}$$

of (a) $\{z \in \mathbf{C} \mid |z+2| = \}$ and (b) the imaginary axis.

2. Use the method of residues to evaluate

$$\int_{0}^{\infty} \frac{x^2 \, dx}{(x^2 + \)^3}.$$

3. Find the number of zeros, counting multiplicities, of

$$f(z) = z^6 - 5z^4 + z^3 - 2z$$

inside the circle $\{z \in \mathbf{C} \mid |z| = \}$, and justify your conclusion.

4. Find all Laurent series expansions of

$$f(z) = \frac{1}{z(z+z^3)}$$

centered at $z_0 = -$ and their associated regions of convergence.

Applied Analysis

. Determine the solution $y = \phi$

Numerical Analysis

. (a) Prove that there exist exactly two positive solutions of the equation

$$\ln x = (x - 4)^2 - .$$

- (b) Find an approximation β of the smaller solution α such that $|\alpha \beta| < -6$.
- (c) Prove that your approximation β is in fact within $^{-6}$ of (the exact) α .

Note: For this problem you may not use any graphing or rootfinding capabilities of your calculator.

2. Suppose that $f^{(5)}$ is continuous. Show that

$$f'''(x_0) = \frac{-f(x_0 - 2h) + 2f(x_0 - h) - 2f(x_0 + h) + f(x_0 + 2h)}{2h^3} + O(h^2).$$

3. Let A be a $n \times n$ band matrix of the following form.

$$\begin{bmatrix}
2 & & & & & & & & & & & \\
b_1 & 2 & & & & & & & & \\
c_1 & b_2 & 2 & & & & & & & \\
& c_2 & \ddots & \ddots & \ddots & & & & \\
& & \ddots & \ddots & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & c_{n-1} & b_{n-2}
\end{bmatrix}$$

Linear Programming

Linear Programming-continued

4. Consider the following problem.

Maximize
$$5x_1 + 8x_2 + 9x_3$$

Subject to $2x_1 + x_2 + x_3 \le 2$
 $4x_1 + 2x_2 + 3x_3 \le 3$
 $x_1 + 3x_2 + 3x_3 \le 4$
 $x_1, x_2, x_3 \ge$

Below are the first an2hlow are th.

Probability

. The negative binomial distribution is used to measure the number of Bernoulli trials one attempts until the rth success occurs. The probability mass function for the negative binomial is

P(X = x) =

Probability-continued

3. Suppose that we toss a fair coin until a head first comes up, and let X represent the number of tosses that were made. Then the possible values of X are $, 2, \ldots$, and the distribution function of X is defined by

$$m(i) = \frac{1}{2^i}$$

which is just the geometric distribution with parameter /2.

- (a) Find the expected value of X. Does this fit your intuition how it should be, given that the coin is fair?
- (b) Suppose that we flip a fair coin until a head first appears, and if the number of tosses equals n, then we are paid 2^n dollars. What is the expected value of the payment?
- (c) From what we learn in (b), how much would you be willing to pay per game for the privilege of playing this game?
- 4. A medical research team wishes to assess the usefulness of a certain symptom (S) in the diagnosis of a particular disease (D). In a random sample of 775 patients with the disease, 744 reported having the symptom. In an independent random sample of 38 subjects without the disease, 2 reported that they had the symptom.
 - (a) Compute the sensitivity of the symptom, P(S|D).
 - (b) Compute the specificity of the symptom, $P(S^c|D^c)$, where ^c indicates the complement of the event.
 - (c) Suppose it is known that the rate of the disease in the general population is . 2, P(D) = . 2.
 - i. What is the positive predictive value of the symptom, P(D|S)?
 - ii. What is the negative predictive value of the symptom, $P(D^c|S^c)$?
 - (d) Find the positive predictive values for the symptom for the following disease rates:
 - (e) What do you conclude about the positive predictive value of the symptom on the basis of the results obtained in part (d)?